1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
#include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include <iostream> #include <list> #include <vector> using namespace std; using namespace cv;
static void help( ) { cout << "\n\t此程序用于演示如何对视频进行快速角点检测。按键说明如下:" << endl; cout << " \n\t【t】-抓取一个引用帧的进行匹配" << endl; cout << " \n\t【l】-使引用更新每一帧视频" << endl; cout << " \n\t【q】或【ESC】-退出程序" << endl; }
namespace { void drawMatchesRelative(const vector<KeyPoint>& train, const vector<KeyPoint>& query, std::vector<cv::DMatch>& matches, Mat& img, const vector<unsigned char>& mask = vector< unsigned char> ()) { for (int i = 0; i < (int)matches.size(); i++) { if (mask.empty() || mask[i]) { Point2f pt_new = query[matches[i].queryIdx].pt; Point2f pt_old = train[matches[i].trainIdx].pt;
cv::line(img, pt_new, pt_old, Scalar(125, 255, 125), 1); cv::circle(img, pt_new, 2, Scalar(255, 0, 125), 1);
} } }
void keypoints2points(const vector<KeyPoint>& in, vector<Point2f>& out) { out.clear(); out.reserve(in.size()); for (size_t i = 0; i < in.size(); ++i) { out.push_back(in[i].pt); } }
void points2keypoints(const vector<Point2f>& in, vector<KeyPoint>& out) { out.clear(); out.reserve(in.size()); for (size_t i = 0; i < in.size(); ++i) { out.push_back(KeyPoint(in[i], 1)); } }
void warpKeypoints(const Mat& H, const vector<KeyPoint>& in, vector<KeyPoint>& out) { vector<Point2f> pts; keypoints2points(in, pts); vector<Point2f> pts_w(pts.size()); Mat m_pts_w(pts_w); perspectiveTransform(Mat(pts), m_pts_w, H); points2keypoints(pts_w, out); }
void matches2points(const vector<KeyPoint>& train, const vector<KeyPoint>& query, const std::vector<cv::DMatch>& matches, std::vector<cv::Point2f>& pts_train, std::vector<Point2f>& pts_query) {
pts_train.clear(); pts_query.clear(); pts_train.reserve(matches.size()); pts_query.reserve(matches.size());
size_t i = 0;
for (; i < matches.size(); i++) {
const DMatch & dmatch = matches[i];
pts_query.push_back(query[dmatch.queryIdx].pt); pts_train.push_back(train[dmatch.trainIdx].pt);
}
}
void resetH(Mat&H) { H = Mat::eye(3, 3, CV_32FC1); } }
int main( ) {
BriefDescriptorExtractor brief(32);
VideoCapture capture; capture.open("1.avi"); if (!capture.isOpened()) { help( ); cout << "capture device " << " failed to open!" << endl; return 1; } help();
Mat frame;
vector<DMatch> matches;
BFMatcher desc_matcher(NORM_HAMMING);
vector<Point2f> train_pts, query_pts; vector<KeyPoint> train_kpts, query_kpts; vector<unsigned char> match_mask;
Mat gray;
bool ref_live = true;
Mat train_desc, query_desc; const int DESIRED_FTRS = 500; GridAdaptedFeatureDetector detector(new FastFeatureDetector(10, true), DESIRED_FTRS, 4, 4);
Mat H_prev = Mat::eye(3, 3, CV_32FC1); for (;;) { capture >> frame; if (frame.empty()) break;
cvtColor(frame, gray, COLOR_RGB2GRAY);
detector.detect(gray, query_kpts);
brief.compute(gray, query_kpts, query_desc);
if (!train_kpts.empty()) {
vector<KeyPoint> test_kpts; warpKeypoints(H_prev.inv(), query_kpts, test_kpts);
Mat mask = windowedMatchingMask(test_kpts, train_kpts, 25, 25); desc_matcher.match(query_desc, train_desc, matches, mask); drawKeypoints(frame, test_kpts, frame, Scalar(255, 0, 0), DrawMatchesFlags::DRAW_OVER_OUTIMG);
matches2points(train_kpts, query_kpts, matches, train_pts, query_pts);
if (matches.size() > 5) { Mat H = findHomography(train_pts, query_pts, RANSAC, 4, match_mask); if (countNonZero(Mat(match_mask)) > 15) { H_prev = H; } else resetH(H_prev); drawMatchesRelative(train_kpts, query_kpts, matches, frame, match_mask); } else resetH(H_prev);
} else { H_prev = Mat::eye(3, 3, CV_32FC1); Mat out; drawKeypoints(gray, query_kpts, out); frame = out; }
imshow("frame", frame);
if (ref_live) { train_kpts = query_kpts; query_desc.copyTo(train_desc); } char key = (char)waitKey(2); switch (key) { case 'l': ref_live = true; resetH(H_prev); break; case 't': ref_live = false; train_kpts = query_kpts; query_desc.copyTo(train_desc); resetH(H_prev); break; case 27: case 'q': return 0; break; }
} return 0; }
|